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Cortical microstructural associations with CSF amyloid and pTau
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Diffusion MRI (dMRI) can be used to probe microstructural properties of brain tissue and holds great promise as a means to non-
invasively map Alzheimer’s disease (AD) pathology. Few studies have evaluated multi-shell dMRI models such as neurite orientation
dispersion and density imaging (NODDI) and mean apparent propagator (MAP)-MRI in cortical gray matter where many of the
earliest histopathological changes occur in AD. Here, we investigated the relationship between CSF pTau181 and Aβ1–42 burden and
regional cortical NODDI and MAP-MRI indices in 46 cognitively unimpaired individuals, 18 with mild cognitive impairment, and two
with dementia (mean age: 71.8 ± 6.2 years) from the Alzheimer’s Disease Neuroimaging Initiative. We compared findings to more
conventional cortical thickness measures. Lower CSF Aβ1–42 and higher pTau181 were associated with cortical dMRI measures
reflecting less hindered or restricted diffusion and greater diffusivity. Cortical dMRI measures, but not cortical thickness measures,
were more widely associated with Aβ1–42 than pTau181 and better distinguished Aβ+ from Aβ- participants than pTau+ from pTau-
participants. dMRI associations mediated the relationship between CSF markers and delayed logical memory performance,
commonly impaired in early AD. dMRI metrics sensitive to early AD pathogenesis and microstructural damage may be better
measures of subtle neurodegeneration in comparison to standard cortical thickness and help to elucidate mechanisms underlying
cognitive decline.
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INTRODUCTION
The AT(N) classification paradigm for defining Alzheimer’s disease
(AD) is based on biomarkers of β-amyloid deposition (A),
pathologic tau (T), and neurodegeneration (N) [1]. The primary
pathological characteristics of AD – abnormal amyloid (Aβ) plaque
and tau neurofibrillary tangle (NFT) deposition – typically precede
neurodegeneration and the onset of clinical symptoms by many
years. According to the original Braak and Braak model [2, 3], Aβ is
initially found within the neocortex and subsequently progresses
to the allocortex and additional brain regions. By contrast, tau is
first found in the locus coeruleus, trans-entorhinal and entorhinal
regions, and then spreads to the hippocampus, temporal cortex,
and the remaining neocortex, ultimately resulting in neuronal
dysfunction, apoptosis and/or necrosis, and neurodegeneration.
Diffusion MRI (dMRI) is a non-invasive variant of standard MRI

that is sensitive to subtle changes in brain cyto- and myelo-
architecture. dMRI can be used to probe regional microstructural
properties of brain tissue, not detectable with standard anatomical
MRI, and holds great promise as a means to map AD
histopathology in vivo. Most studies use single-shell diffusion
tensor imaging (DTI) to evaluate white matter (WM) microstruc-
ture because of the relatively short dMRI acquisition time needed
to robustly fit DTI compared to other dMRI models. However,
studies have increasingly shown that DTI is also a valuable
technique to study microstructural properties of gray matter (GM)

and may be valuable to study early Aβ and tau cortical deposition
along the AD continuum [4]. Compared to WM, GM microarch-
itecture is more complex and less well organized, affecting the
accuracy and complicating biological interpretations of many
dMRI models including DTI. Multi-shell dMRI protocols can be used
to model non-coherent neurite organization (e.g., crossing fibers)
and restricted diffusion (e.g., intracellular diffusion) and may
further aid in probing cortical GM microstructure.
The neurite orientation dispersion and density imaging (NODDI)

[5] model is a three-compartment model that attempts to
separate signal contributions from intracellular and extracellular
tissue compartments in the WM. NODDI in GM is more
controversial due to numerous model assumptions and para-
meters that were based on WM. For example, without extremely
rigorous dMRI acquisitions (i.e., very high b-values and short
diffusion times), NODDI cannot separate diffusion signals from the
intra- and extra-cellular space when the cell membrane is
unmyelinated, as in cell bodies [6]. However, certain NODDI
parameters can be tuned for GM (e.g., diffusivity values) [7] to
improve the precision of GM model estimates. NODDI in the GM
has previously revealed cortical microstructural alterations in
individuals with amyloid and tau pathology, prior to detectable
changes in cortical thickness [8]. Other multi-shell dMRI models
that aim to accurately recover the sources of the diffusion signal,
such as mean apparent propagator (MAP)-MRI [9], impose minimal
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model assumptions. Such methods may be more sensitive to
cellular and non-cellular barriers in the cortex and therefore earlier
microstructural damage, but their relationship with AD CSF
biomarkers has not yet been assessed.
Decreases in cerebral spinal fluid (CSF) concentrations of β-

amyloid and increases in phosphorylated tau (pTau) are well-
established biomarkers that can aid in AD diagnosis [10]. As Aβ
aggregates into fibrils and is sequestered into plaques in the brain,
a lower amount is able to diffuse into the CSF; conversely, an
increase in intracellular pTau and tangle pathology, possibly
triggered by Aβ aggregation in the brain, is associated with an
increase in CSF pTau. Two studies have identified associations
between CSF biomarkers and either single-shell DTI and ‘free
water’ (another single-shell diffusivity measure) or multi-shell
NODDI cortical measures in samples of cognitively unimpaired
participants [8, 11]. As each dMRI model has known limitations,
examining effects across numerous diffusion models may help to
identify metrics that can be derived from clinically practical dMRI
sequences to study cognitive impairment and AD.
In this study, we evaluated the effect of CSF phosphorylated tau

181 (pTau181) and β-amyloid 1-42 (Aβ1–42) burden, as well as their
ratio, on cortical NODDI and MAP-MRI microstructural measures in
largely preclinical, cognitively unimpaired (69.7% CU) or mildly
cognitively impaired (27.3% MCI) participants from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI). We tuned NODDI para-
meters to assess both intra- and extra-cellular NODDI volume
fractions in the GM and compared findings to multi-shell MAP-MRI
measures. We hypothesized that while NODDI would offer greater
pathological specificity, MAP-MRI would be more sensitive to
overall effects. For comparison, we also examined more conven-
tional single-shell DTI indices and cortical thickness, the most
commonly used measure of GM damage beyond hippocampal
volume. We then determined whether cortical MRI measures link
CSF biomarkers to cognitive function. Understanding how various
dMRI measures of brain microstructure relate to CSF Aβ and tau
pathology may help to improve current AD models and provide
further insight into mechanisms underlying cognitive decline.

MATERIALS AND METHODS
Participants
MRI, CSF, clinical diagnosis, demographic, and cognitive measures were
downloaded from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (https://ida.loni.usc.edu/). ADNI was launched in 2003, initially as
a 5-year public–private partnership to assess and optimize biomarkers for
clinical trials in Alzheimer’s disease. In its third phase, ADNI-3 includes a
multi-shell dMRI protocol in a subset of participants, making it possible to
fit advanced diffusion models. Across all ADNI, a total of 70 participants
were identified with both multi-shell diffusion MRI and CSF biomarker data
available; CSF and multi-shell dMRI availability were the only criteria for
study inclusion. Four participants were excluded after dMRI quality
assurance (three CU and one dementia): one field of view was cropped
and the remaining three had artifacts that were not corrected with the
preprocessing pipeline described below. Data were analyzed from 66
remaining participants who ranged in age from 60 to 90 years (mean age:
71.8 ± 6.2 years; 25 male, 41 female; Table 1); all but four participants
identified as non-Hispanic White. 46 participants were cognitively
unimpaired (CU), 18 were diagnosed with mild cognitive impairment
(MCI), and two were diagnosed with dementia [12]. Institutional review
boards at participating institutions approved all study procedures, and
informed written consent was obtained from all participants.

Biomarker Assessments
Elecsys cerebrospinal fluid (CSF) immunoassay Aβ1–42 and pTau181 estimates
were downloaded from the ADNI database. Values outside the measuring
range were set to the respective assay’s limit and included in the analysis.
Based on the thresholds proposed by Hansson et al. [13] and Blennow
et al. [14], pathological CSF Aβ1–42 was defined as Aβ1–42 ≤ 977 pg/ml,
pathological pTau181 was defined as pTau181 > 24 pg/ml, and pTau181/Aβ1–42
was defined as pTau181/Aβ1–42 > 0.025 (Table 1).

Cognitive Assessments
Here we focused on a measure of delayed memory that is sensitive to
neuropathological changes in the early stages of AD. The Wechsler
Memory Scale-Revised (WMS-R) [15] delayed logical memory was used to
index cognitive performance; total scores were used as the primary
outcome measures.
Supplementary analyses also evaluated more general cognitive compo-

site scores developed by the Alzheimer’s Disease Sequencing Project
Phenotype Harmonization Consortium (ADSP-PHC), a large-scale effort to
harmonize and co-calibrate cognitive domain scores across multiple
studies of cognitive aging [16]. Available ADNI3 ADSP-PHC cognitive
domain scores included memory, executive function, language, and
visuospatial functioning (Supplementary Table 12).

ADNI3 MRI Protocol
Subjects with multi-shell diffusion MRI underwent whole-brain MRI
scanning on 3 T Siemens Advanced Prisma scanners at 10 acquisition
sites across North America. Anatomical 3D T1-weighted (T1w) MPRAGE
sequences (256×256 matrix; voxel size = 1.0×1.0×1.0 mm; TI= 900ms;
TR= 2300ms; TE= 2.98 ms; flip angle=9°), and multi-shell multiband dMRI
(116×116 matrix; voxel size: 2x2x2 mm; TR= 3400ms; δ= 13.6 ms, Δ =
35.0 ms scan time = 7.25min) were collected. 127 separate images were
acquired for each dMRI scan: 13 b0 images, 6 b= 500 s/mm2,
48 b= 1000 s/mm2 and 60 b= 2000 s/mm2 diffusion-weighted images
(DWI). The diffusion time (td), the time between the first and second
diffusion gradients, was 30.5 ms.

Image Processing
Cortical regions of interest (ROIs) were defined on T1w images using the
Desikan Killiany atlas [17]. Raw T1w images were first denoised using ANTS
non-local means [18] and further processed using the FreeSurfer version
7.1 pipeline [19]. FreeSurfer cortical segmentations were visually inspected
for accuracy and manually corrected using control points.
Raw DWI were denoised using the DIPY LPCA filter [20, 21] and corrected

for Gibbs ringing artifacts with MRtrix [22]. A synthetic undistorted b0 was
created using Synb0-DISCO [23] and used for FSL’s topup distortion
correction [24]. Eddy correction was performed with FSL’s eddy tool [25]
including repol outlier replacement [26] and slice timing correction [27].
DWI then underwent B1 field inhomogeneity corrections [28].
Participants’ DWI were warped to their respective T1w image to further

correct EPI-induced susceptibility artifacts and to place both modalities
into the same coordinate space. First, corrected b0 images were linearly
aligned to processed T1w images using a FreeSurfer derived white matter
mask for FSL’s flirt boundary-based registration (BBR) [29]. To avoid any
single diffusion derived map driving the coregistration, ANTs multi-channel
non-linear registration was used to warp each participant’s DWI to their
respective T1w [30, 31]; three equally weighted channels were used for
registration: the average b0 image, DTI FA, and DTI MD [32]. The linear and
non-linear registrations were concatenated and used to correct the DWI for
EPI distortions in their native space with only one interpolation. Finally, the
DWI underwent a multi-tissue intensity normalization using MRtrix
mtnormalize [33].
After processing, DWI still suffered from susceptibility artifact hyper-

intensities particularly in the temporal lobes. DKI [34] is highly sensitive to
noise artifacts and can produce implausible negative kurtosis values in
affected regions [35, 36]. To automatically identify DWI regions with
remaining artifacts, DKI was fitted with DIPY and a mask was created from
voxels where mean kurtosis (MK) values were ≤ 0 (Supplementary Fig. 1).
These voxels were removed from further analysis.

Diffusion MRI Models and Scalar Indices Evaluated
Mean Apparent Propagator (MAP)-MRI. MAP-MRI was fitted to the data
using Laplacian-regularization with DIPY [9, 37]. Five resulting MAP-MRI
measures were evaluated: 1) mean square displacement (MSD), a measure
of how far protons are able to diffuse on average during the diffusion time;
2) return-to-origin probability (RTOP), the probability that a proton will be
at the same position at the first and second diffusion gradient pulse; 3)
return-to-axis probability (RTAP), the probability that a proton will be along
the axis of the main eigenvector of a diffusion tensor; 4) return-to-plane
probability (RTPP), the probability that a proton will be on the plane
perpendicular to the main eigenvector; and 5) q-space inverse variance
(QIV), a measure of variance in the signal (see Supplementary Table 1 for
further metric descriptions).
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Neurite Orientation Dispersion and Density Imaging (NODDI). NODDI was
fitted with DMIPY [5, 38] using a multi-tissue approach (MT-NODDI)
[39, 40]. The original NODDI formulation assumes one tissue response (S0)
across the whole brain. This assumption introduces a systematic bias in
estimating tissue compartment volume fractions as different brain tissue
types (WM, GM, CSF) have different T2 relaxation times; MT-NODDI
incorporates estimates of tissue-specific S0 for each of the three NODDI
compartments [39, 40]. To improve NODDI volume fraction estimates in
the cortical GM, the intracellular and the extracellular compartments (ICVF
and ECVF) were adjusted by the GM’s S0, while the isotropic free-water or
CSF compartment (ISOVF) was adjusted by the CSF’s S0. Parallel diffusivity
(d∥) varies across brain tissue, and Guerrero et al. [7] have shown that the
default d∥ value assumed by NODDI, 1.7 μm2/ms, is too high for the GM.
Here, to find the optimal d∥ value, MT-NODDI was fit with d∥ values
ranging from 0.5-1.6 μm2/ms in increments of 0.1. We then compared the
average mean squared error (MSE) between the measured and predicted
DWI signals within FreeSurfer derived medial cortical ribbon voxels (as
described in the section below) of CU participants to identify the d∥ with
lowest error. Two-sided paired t-tests revealed the MSE found with d∥= 0.8
μm2/ms was significantly lower than all other d∥ values evaluated
(Supplementary Fig. 2). Our analyses, therefore, used d∥= 0.8 μm2/ms to
model NODDI in the GM.

Diffusion Tensor Imaging (DTI). For comparison with commonly available
single-shell measures, we estimated mean diffusivity (MD) using the DTI
model. Compared to DTI fractional anisotropy (FA), MD has been shown to
be both more sensitive to clinical symptoms and age-associated
neurodegeneration, and more appropriate for evaluating brain regions
with less coherent organization than WM, such as cortical GM [4, 41–43].
DTI was fitted with FSL’s dtifit with weighted least squares using only the
subset of b0 and b= 1000 s/mm2 volumes.

Cortical Gray Matter Measures. DWI to T1w transformations were applied
to 10 dMRI scalar maps to bring them into T1w coordinate space for
analysis. To mitigate partial volume effects in FreeSurfer cortical
segmentations, a surface was created at the halfway point between the
pial and white matter surface, or the FS medial cortical ribbon. Voxels
corresponding to noise in dMRI images, identified with a DKI MK value ≤ 0,
were removed from the medial cortical ribbon. For each of the 10 diffusion
MRI measures, a robust mean was calculated across the remaining FS
medial cortical ribbon voxels within 34 ROIs using an iterative M-estimator
from the ‘WRS2’ package in R [44, 45]. To further diminish any partial
volume effects and any misregistration between diffusion and structural
images, 1) voxels with an ISOVF > 0.5 and 2) voxels with ICVF values in the
1st and 99th percentiles across all participants were excluded from the
mean (i.e., voxels in the ribbon that had extreme ICVF values for the
sample; Supplementary Fig. 1). We also analyzed an AD signature meta-ROI
(AD-metaROI) of cortical regions that are sensitive to early AD consisting of
the bilateral inferior parietal, middle temporal, inferior temporal, pre-
cuneus, fusiform, and entorhinal regions [46]. In total, we evaluated 35 ROIs
– 34 individual ROIs and one AD-metaROI.

Statistical Analyses
Regional Cortical MRI Measure Associations. Mixed effect linear regressions
were used to identify associations between cortical ROI dMRI measures and
Aβ1–42, pTau181, pTau181/Aβ1–42 CSF biomarkers. The data collection site was
used as the random-effects grouping variable, and fixed-effects covariates
included age, sex, and years of education. A statistical mixed-effects
model harmonization approach was used to account for site effects in lieu of
an ROI-level harmonization approach like ComBat [47], as previous
comparisons across even more comprehensive sets of the heterogeneous
single- and multi-shell ADNI3 dMRI acquisition protocols and sites have
shown that ComBat did not improve or change results found with random-
effect linear regressions [42, 48]. Regression analyses were conducted with
the ‘nlme’ package in R (version 3.2.3). Effect sizes, after accounting for all
covariates, were estimated as standardized β coefficients. The false discovery
rate procedure (FDR) [49] was used to correct for multiple comparisons
across 1050 tests (35 ROIs * 10 dMRI measures * 3 CSF biomarkers; q= 0.05).
We used the same model to compare CSF associations with regional
FreeSurfer cortical thickness measures (CTh). CTh results were corrected for
multiple comparisons using FDR across 105 tests (35 ROIs * 3 CSF
biomarkers). CSF biomarkers were modeled as continuous variables for our
primary analyses. For comparison, associations with log10-transformed
pTau181 were assessed in supplementary analyses.

Secondarily, participants were classified into Aβ1–42 and pTau181 CSF
biomarker groups (‘+’ or ‘-’), dichotomized using established pathological
thresholds of Aβ1–42 ≤ 977 pg/ml and pTau181 > 24 pg/ml [13, 14]. Differ-
ences in summary AD-metaROI cortical measures between dichotomized
Aβ1–42 and pTau181 groups were tested with an analysis of covariance
(ANCOVA) using the same statistical model from our primary analyses.
Pairwise tests were subsequently performed to directly compare CSF
biomarker groups; dMRI comparisons were FDR corrected for 60 pairwise
tests and CTh for 6 tests. We also tested the interactive effects of Aβ1–42 and
pTau181 groups (i.e., ‘+’ or ‘-’) on AD-metaROI cortical measures. Using the
same mixed effect model from our primary analyses, we tested associations
between each cortical MRI measure and either Aβ-by-pTau group (i.e.,
continuous Aβ1–42 by dichotomized pTau181) or pTau-by-Aβ group (i.e.,
continuous pTau181 by dichotomized Aβ1–42) interactions. FDR was again
used to correct for 20 dMRI or two CTh tests.
In supplementary analyses, we used the same mixed effect model from

our primary analyses to evaluate cortical ROI MRI measure associations with
clinical diagnosis; we compared cortical measures between cognitively
unimpaired (CU; N= 46) and cognitively impaired (CI: MCI or dementia;
N= 20) participants. Effect sizes for group differences, after accounting for all
covariates, were estimated as d-values. FDR was used to correct for 350 dMRI
tests (35 ROIs * 10 dMRI measures) or 35 CTh tests.

Exploratory Classification of CSF Biomarker Groups by Cortical Measures. As
an exploratory analysis, we used mixed effect logistic regressions to
determine whether dMRI and CTh AD-metaROI measures could accurately
classify participants into Aβ1–42, pTau181, pTau181/Aβ1–42 groups (‘+’ or ‘-’)
dichotomized using established cut-point thresholds [13, 14]. In addition to
AD-metaROI measures, site was included in the model as a grouping
variable for random-effects regression. To assess performance, the area
under the receiver operating characteristics curve (AUC) was calculated
using the ‘pROC’ package in R. FDR was used to correct for 30 dMRI or
three cortical thickness tests.
In supplementary analyses, we evaluated classification AUCs of

residualized AD-metaROI MRI after adjusting for age, sex, and education.
The data were also split into five 80% and 20% train-test subsets and the
AUC across the five folds was averaged to assess performance.

Cortical Mediators between CSF Biomarkers and Delayed Memory. We first
identified the relationship between CSF Aβ1–42, pTau181, and pTau181/
Aβ1–42 load and cognitive performance by computing linear regressions
with CSF biomarkers as the independent variable and delayed logical
memory performance (WMS-R logical memory) as the dependent variable,
after adjusting for fixed-effects (age, sex, education) and random-effects
(site) covariates. In supplementary analyses, ADSP-PHC cognitive compo-
site scores were also evaluated. These included scores for memory,
executive function (available for N= 64 of 66 participants), language
(N= 65), and visuospatial functioning (N= 29).
To better understand the underlying microstructural process by which

pathological markers influence cognition, we then completed mediation
analyses using the ‘mediation’ package in R to determine whether AD-
metaROI cortical MRI measures (both structural and diffusion) would
explain the observed relationships between CSF biomarkers and cognitive
measures; we used the same covariate structure (Supplementary Fig. 3).
Per convention, mediation analyses were performed only for AD-metaROI
cortical measures that were significantly associated with CSF biomarkers in
the primary analyses.

RESULTS
Participant demographics
Basic demographic and clinical characteristics of study partici-
pants are reported in Table 1. There was a significant relation-
ship between continuous CSF biomarker values and clinical
diagnosis (Aβ: F= 3.8 p= 0.03; pTau: F= 4.4 p= 0.02; Aβ/pTau:
F= 9.8 p= 0.0002), but no relationship between dichotomized
CSF Aβ and pTau subgroup (i.e., Aβ-/pTau-, Aβ-/pTau-+, Aβ+ /
pTau-, Aβ+ /pTau+ ) and clinical diagnosis (χ2= 11.6, p= 0.07).
In addition, clinical characteristics of study participants within
each diagnostic group (CU or CI) are reported in Supplementary
Table 2, along with regional differences in cortical MRI metrics
between groups in Supplementary Table 6 and Supplementary
Fig. 9.
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Correlations between cortical AD-metaROI MRI measures
Pearson’s correlations between cortical AD-metaROI MRI measures
revealed that many dMRI measures were highly correlated across
participants (Supplementary Fig. 4). The strongest correlations
(Pearson’s r > |0.9 |) were found between MAP-MRI MSD, QIV, and
DTI MD (r= 0.92–0.99), and between MAP-MRI RTAP, RTOP, and
RTPP (r= 0.97–0.99); MAP-MRI RTAP, RTOP, and RTPP were
negatively correlated with MAP-MRI MSD and DTI MD (r= -0.9
to -0.97). NODDI ISOVF was also highly correlated with MAP-MRI
MSD and DTI MD (r= 0.94), and negatively correlated with MAP-
MRI RTTP (r= -0.94). These dMRI measures remained correlated in
the subset of CU and Aβ- participants, however CTh was notably
less correlated with dMRI measures in this subset (Supplementary
Fig. 4).

Primary CSF biomarker associations with regional cortical MRI
measures
For each CSF and MRI measure, the number of cortical ROIs in
which a significant association was detected after multiple
comparisons correction (dMRI p ≤ 0.012; CTh p ≤ 0.0056) and the
direction of associations are reported in Supplementary Table 3.
At least one ROI was associated with Aβ1–42 across nine out of

the 10 dMRI measures evaluated; only ECVF measures were not
associated. The largest and most widespread negative associa-
tions were detected with QIV (16 ROIs) and ISOVF (15 ROIs) in
largely the same temporal and frontal ROIs; MD also showed
associations in a similar subset of ROIs (13 ROIs; Fig. 1). The largest
effects were detected with QIV in the pars opercularis, pars
triangularis and insular cortex (β= -0.39), followed by the
parahippocampal and entorhinal cortex (β= -0.38). ICVF was
significant in 14 regions but, in addition to frontal and temporal
regions, included more parietal cortex associations (largest
β= 0.34 in supramarginal gyrus). The fewest associations were
detected with ODI, RTAP, and RTOP; however, one of the largest
overall effects was detected with ODI in the supramarginal gyrus
(β= -0.38).
Fewer dMRI measures were associated with pTau181 than with

Aβ1–42, but overall effect sizes were larger (Fig. 2). The largest and
most widespread negative associations were detected with ECVF
(7 ROIs), followed by positive associations with ISOVF (6 ROIs) and
QIV (5 ROIs) in largely frontal and parietal regions. No other dMRI
measures were associated with pTau181. The greatest overall
effects were detected in the paracentral gyrus (ECVF β= -0.47;
ISOVF β= 0.40). Similar associations were found when testing
log10-transformed pTau181 (Supplementary Results 2.4).
More widespread associations were detected with pTau181/

Aβ1–42 across all 10 dMRI measures compared to Aβ1–42 or pTau181
alone (Fig. 3). The most widespread positive associations were
detected with ISOVF (29 ROIs) and MD (24 ROIs). The largest dMRI
effects were detected with QIV in the entorhinal cortex (β= 0.51),
parahippocampal gyrus, and pars orbitalis (β= 0.49). As with
Aβ1–42, the fewest associations were detected with RTAP, RTOP,
ECVF, and ODI.
Significant associations between CTh and both Aβ1–42 and

pTau181/Aβ1–42 were more localized compared to the widespread
associations detected with cortical dMRI measures; comparable
numbers of dMRI and CTh associations were detected with
pTau181 (7 ROIs) but not log10-transformed pTau181 (3 ROIs;
Supplementary Results 2.4). CTh was only associated with Aβ1–42
in the entorhinal cortex (β= 0.33). Across all MRI measures
evaluated, however, the largest pTau181 and pTau181/Aβ1–42
associations were detected with CTh in the superior parietal
(β= -0.49) and entorhinal (β= -0.59) cortex, respectively.
In sensitivity analyses, associations between CSF and cortical

MRI measures that were significant in the entire cohort were
tested in individuals without dementia (i.e., 64 of 66 participants).
98.5% of significant associations remained significant (Supple-
mentary Results 2.5).

Secondary AD-metaROI MRI measure comparisons between
CSF biomarker groups
Across all cortical AD-metaROI measures, ANCOVA revealed
significant group differences between four dichotomized (+/-)
Aβ1–42 and pTau181 groups (dMRI p ≤ 0.041; CTh p ≤ 0.0002; Fig. 4A,
B). In pairwise comparisons, all dMRI measures other than RTOP,
RTAP, and ECVF were nominally different between Aβ-/pTau- and
Aβ+/pTau+ individuals (p < 0.05). ISOVF, ICVF, and QIV were
nominally different between those Aβ-/pTau+ and Aβ+/pTau+;
QIV was also different between Aβ-/pTau- and Aβ+/pTau-
individuals. Only CTh differences between Aβ+/pTau+ and the
other three groups remained significant after multiple compar-
isons correction. Overall, there was no detectable difference
between pTau- and pTau+ ; only CTh within Aβ+ individuals was
significantly different between pTau- and pTau+ .
While underpowered for statistical comparisons (N as low as 2

to 6 participants per group), further breakdown of biomarker
groups by clinical diagnosis suggests that dMRI effects may be
driven by Aβ+ participants with MCI or dementia, regardless of
pTau status (Supplementary Figs. 10-11).

Effect of CSF biomarker interactions on AD-metaROI measures
There were no significant associations between CSF Aβ1–42-by-
pTau181 group (i.e., continuous Aβ1–42 by dichotomized pTau181)
interactions and dMRI AD-metaROI measures. However, a sig-
nificant Aβ1–42-by-pTau181 group interaction was found on CTh
(β= 0.64; p= 0.0051) whereby lower CSF Aβ1–42 was associated
with lower CTh only in those individuals who were pTau+
(Supplementary Fig. 12). No significant CSF pTau181-by-Aβ1–42
group (i.e., continuous pTau181 by dichotomized Aβ1–42) interac-
tions were detected for any AD-metaROI MRI measure (Supple-
mentary Fig. 13).

Exploratory classification of CSF biomarker groups by cortical
MRI measures
As reported in Fig. 4B and Supplementary Table 7, except for ECVF,
dMRI AD-metaROI measures better distinguished Aβ+ from Aβ-
participants than CTh did (dMRI AUC= 0.74–0.82; CTh AUC=
0.73); QIV performed best (AUC= 0.82) while MD, ICVF, RTPP, and
MSD performed within 0.05 of QIV (AUC= 0.77–0.79). In contrast,
only CTh significantly classified pTau181 positivity (AUC= 0.67).
While all MRI measures were significant, pTau181/Aβ1–42 positivity
was also best classified by QIV (AUC= 0.92) with comparable
performance (i.e., within 0.05) by ICVF, ISOVF and MD (AUC= 0.87-
0.88). Similar classification trends were found 1) in the subset of
participants without dementia, 2) when AD-metaROI MRI mea-
sures were first residualized (i.e., adjusted for age, sex, and
education), and 3) with five-fold cross-validation using 80/20
training/test splits (Supplementary Results 2.9).

Cortical MRI mediators between CSF biomarker and
delayed memory
Lower CSF Aβ1–42 was associated with poorer delayed memory
performance (p= 0.01; β= 0.30), as hypothesized. In previous
analyses, Aβ1–42 was significantly associated with QIV, ICVF, and
ODI AD-metaROI measures (Fig. 1). The effect of Aβ1–42 on
memory was fully mediated by ICVF (33% of the total effect) and
QIV (41%; Table 2).
Greater pTau181/Aβ1–42 was also associated with poorer delayed

memory performance (p= 5.9×10-5; β =-0.50). CSF pTau181/Aβ1–42
was significantly associated with CTh and all AD-metaROI
measures except ODI and ECVF (Fig. 3). Each of the seven dMRI
AD-metaROI measures was found to partially mediate the effect of
pTau181/Aβ1–42 on delayed memory (~17-28% of the total effect).
CTh did not have a mediating effect (Table 2).
We did not find significant associations between CSF pTau181

(p= 0.22) or log10-transformed pTau181 (p= 0.08) and delayed
memory.
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Mediation results from sensitivity analyses excluding two
individuals with dementia revealed similar results to those in the
whole sample (Supplementary Table 11). Supplementary media-
tion analyses of harmonized composite cognitive domains from
the ADSP-PHC can be found in Supplementary Results 2.11. Briefly,
effects of Aβ1–42 (p= 0.03; β= 0.23), log10-transformed pTau181
(p= 0.03; β= -0.27), and pTau181/Aβ1–42 (p= 0.0015; β= -0.37) on
composite memory scores were fully mediated only by QIV (41.7%
of the total effect), CTh (64.1%), and ISOVF (36.9%) respectively
(Supplementary Table 13). No MRI mediation effects were
detected with executive function or language, and no CSF metrics
were associated with visuospatial scores.

DISCUSSION
In this study, we investigated the relationship between regional
microstructural dMRI measures in cortical gray matter and CSF Aβ
and pTau in a population of largely cognitively unimpaired and
MCI individuals from the third phase of the Alzheimer’s Disease
Neuroimaging Initiative. We found that lower CSF Aβ and higher
CSF pTau were associated with cortical DTI, NODDI, and MAP-MRI
dMRI measures reflecting less hindered or restricted diffusion (i.e.,
lower RTAP, RTOP, RTPP, ICVF) and greater diffusivity (i.e., higher
MD, MSD, QIV, ECVF, ISOVF). Cortical dMRI measures were more
widely associated with Aβ than pTau and better distinguished Aβ
+ from Aβ- participants. In contrast, cortical thickness was more
tightly linked with pTau. dMRI associations mediated the

relationship between CSF markers and performance on delayed
logical memory tasks, which is vulnerable to AD pathogenesis.

CSF Aβ associations with cortical MRI measures
Cortical dMRI measures were widely associated with CSF Aβ
concentrations, particularly in AD vulnerable regions such as the
entorhinal, isthmus cingulate, and frontal cortex. These extensive
associations are consistent with patterns of both amyloid PET
tracer uptake [50–52] and post-mortem amyloid deposits found
throughout the neocortex [53] in early to intermediate disease
stages.
Across all dMRI measures, QIV from MAP-MRI showed the most

robust associations with CSF Aβ and it best distinguished Aβ+
from Aβ- participants. QIV is a general measure of the variance of
the diffusion signal, which has been shown to be highly sensitive
to the presence of biological barriers in regions with lower
restriction and greater isotropic volume fractions values, such as in
the cortical ribbon [37]; conversely, RTOP and RTAP (also derived
from MAP-MRI) may only be sensitive in regions with extremely
high restriction such as the WM. MAP-MRI is fitted to the overall
diffusion signal (i.e, from both intra- and extra-cellular compart-
ments) and imposes few assumptions, potentially offering greater
sensitivity to amyloid load than multi-compartment models such
as NODDI.
In contrast, NODDI parses the signal into intra- and extra-cellular

spaces and resulting ICVF, ECVF, and ISOVF measures may be
sensitive to different aspects of AD histopathology. Measures

Fig. 1 CSF Aβ1–42 associations with cortical MRI measures. A Regional effect sizes (Beta-values) for associations between CSFAβ1–42 and each
cortical measure across participants. For reference, the ROIs comprising the AD-metaROI are highlighted in gray (top left). B Beta-values and
standard errors for significant associations (dMRI p ≤ 0.012; CTh p ≤ 0.0056) are shaded according to the absolute value of their effect size.
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reflecting lower diffusion restriction (i.e., lower ICVF) may reflect
loss of cortical neurites, while lower ODI (also derived from
NODDI) may be associated with lower complexity in dendritic
arborization. Greater ISOVF or free-water volume could be a
function of both neurodegeneration and greater inflammation-
associated edema [54–56]. Inflammation plays a substantial role in
AD pathogenesis [57]. Persistent immune response in the brain is
not only associated with neurodegeneration but exacerbates Aβ
and tau pathology and may even link initial Aβ pathology to
subsequent NFT development [58].
ICVF and ISOVF also showed spatially distinct patterns of

associations with amyloid; while ICVF associations were strongest
in fronto-temporal regions, ISOVF associations also included
parietal regions. Among regions that were selectively associated
with each measure, the largest effect size differences between
ICVF and ISOVF amyloid associations were found in either the
earliest or latest myelinating regions of the neocortex: ISOVF
showed larger effects in medial orbitofrontal cortex (late/lightly
myelinated), while ICVF showed larger effects in paracentral cortex
(early/heavily myelinated; Supplementary Fig. 17). These measures
may capture the proposed inverse relationship between the
pattern of pathology progression and myelination during devel-
opment [59, 60]. Selective associations between ISOVF and
amyloid in late myelinating regions that are vulnerable to early
pathogenesis could reflect more advanced degeneration in these
regions. However, it is also possible that compared to ICVF, ISOVF
is a better suited metric for regions that simply lack sufficient

myelin. NODDI may fail to properly estimate measures of
restriction in unmyelinated tissue [61].
Although amyloid plaques are formed in the extracellular space,

we found no associations between CSF Aβ and ECVF. This may be
partially due to the dMRI acquisition parameters used in
ADNI, where the diffusion time is td= 30.5 ms and the maximum
b-value is b= 2000 s/mm2. When dMRI sequences do not have
sufficiently short diffusion times (td ≤ 20ms) and high b-values
(b > 3000 s/mm2), the NODDI model is unable to differentiate the
extracellular space from permeable cell bodies due to water
exchange between these compartments [6]; the ECVF measure-
ment therefore loses the specificity touted by biophysical models.
Sequences with such advanced parameters can be used to fit
models such as soma and neurite density imaging (SANDI) [62],
which can also estimate cell body size and density. These
sequences can currently only be acquired on one of the few
existing ultra-high gradient strength Connectome scanners
[62, 63], and are not currently feasible for large-scale multisite
clinical studies of neurodegenerative disorders.
Our results, however, support the use of measures derived from

common single-shell sequences, such as DTI MD, for associations
with CSF amyloid. We found both MD regional associations and
classification performance were comparable to multi-shell ISOVF.
While multi-shell ISOVF and single shell MD gave similar patterns
of results, ISOVF and other multi-shell metrics like QIV and ICVF
often showed larger effect sizes or spatially distinct patterns of
CSF associations (including supplementary comparisons between

Fig. 2 CSF pTau181 associations with cortical MRI measures. A Regional effect sizes (Beta-values) for associations between CSF pTau181 and
each cortical measure across participants. For reference, the ROIs comprising the AD-metaROI are highlighted in gray (top left). B Beta-values
and standard errors for significant associations (dMRI p ≤ 0.012; CTh p ≤ 0.0056) are shaded according to the absolute value of their effect size.
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CU and CI participants). This suggests multi-shell measures may
still offer sensitivity and specificity beyond DTI MD. We note that
higher MD and ISOVF measures may be particularly confounded
by exacerbated partial volume effects in the presence of cortical
atrophy; however, we mitigated these effects by excluding voxels
with ISOVF > 0.5 from all mean cortical dMRI measures [64]. In fact,
AD-metaROI MD and ISOVF were more tightly correlated with ICVF
than cortical thickness, suggesting they capture microstructural
phenomena beyond the partial voluming that can be attributable
to atrophy.
In contrast to dMRI measures, cortical thickness was only

associated with amyloid in the entorhinal cortex. Aβ biomarker
abnormalities are thought to precede tau and neurodegenera-
tion in many proposed models of the AD pathological cascade.
T1w macrostructural measures, such as cortical thickness, are the
most frequently used biomarkers of neurodegeneration, how-
ever our results support evidence that changes in microstruc-
tural dMRI measures can precede those detectable with T1w MRI
and may be more suitable for detecting early cortical Aβ
pathology.

CSF pTau associations with cortical MRI measures
Compared to amyloid, dMRI measures showed fewer regional
associations with CSF pTau, albeit larger effect sizes. These effects
were restricted to frontal and parietal regions implicated in
later Braak stages, Braak 5-6. This aligns with our exploratory

comparisons between CSF biomarker groups which show that
pTau effects appear to be driven only by Aβ+ individuals (N= 12),
particularly those with MCI or dementia (N= 6; Supplementary
Figs. 10-11), suggesting a later disease stage. These preliminary
comparisons are highly limited by the number of individuals in
each group, which could also explain the limited number of
regional pTau associations detected in our study.
Counterintuitively, given the evidence showing intracellular

pTau accumulation that results in cell body NFTs, the most robust
dMRI effects detected were lower ECVF. Although the specific
mechanisms are unknown, accumulation and aggregation of pTau
in the intracellular space (i.e., cell body), in conjunction with
extracellular pathology (e.g., amyloid plaques, inflammatory
cytokines, ghost tangles) may together create enough barriers
to hinder diffusion captured by ECVF. Since cell death occurs
heterogeneously in the cortex, the lack of ICVF associations could
be driven by opposing effects of intracellular pTau aggregation in
some cells increasing restriction (i.e, increased ICVF) and the death
of other cells decreasing restriction (i.e, decreasing ICVF). The
observed association between higher ISOVF with greater pTau in
late Braak regions could be the result of a greater degree of
neuronal loss in later stages. As one of the first studies examining
these effects, the mechanisms driving our findings are still
unknown; however, increases in both cortical ICVF and ISOVF
have been previously reported in studies of human tauopathy
mouse models (rTg4510) [65].

Fig. 3 CSF pTau181/Aβ1–42 associations with cortical MRI measures. A Regional effect sizes (Beta-values) for associations between CSF
pTau181/Aβ1–42 and each cortical measure across participants. Effect sizes are shown regardless of P-value. For reference, the ROIs comprising
the AD-metaROI are highlighted in gray (top left). B Beta-values and standard errors for significant associations (dMRI p ≤ 0.012; CTh p ≤ 0.0056)
are shaded according to the absolute value of their effect size.
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Higher pTau was most strongly associated with lower cortical
thickness in the superior parietal cortex and metaROI. Early Braak
1-4 temporal and metaROI pTau associations were only detected
with cortical thickness, perhaps suggesting more advanced
atrophy in regions with earlier involvement. Medial temporal tau
increases with age and does not necessarily indicate AD pathology
[66]. In contrast, significant pTau associations in the latest Braak 6
regions, including postcentral, paracentral, cuneus, and precentral
cortex, were only detected with microstructural dMRI measures,
which may capture earlier stages of degeneration. Larger studies
will allow for event-based modeling to estimate the sequence in
which these cortical biomarkers become abnormal [67]. This
approach can be used to help build an understanding of the
dynamics of not only typical disease progression, but also to
identify distinct spatiotemporal trajectories of tau subtypes [68].

CSF pTau/Aβ associations with cortical MRI measures
As expected, we found the largest overall associations between
cortical MRI measures and CSF pTau/Aβ. Cortical measures also
better classified dichotomized CSF ratios than individual Aβ or
pTau measures. While most of the associations between imaging
and CSF ratios aligned with results when examining Aβ and pTau
separately, MAP-MRI measure associations were more widespread
than those observed using the measures individually, consistent
with studies showing better diagnostic accuracy of CSF biomar-
kers when analyzed together [69, 70].

Cortical MRI mediators between CSF biomarker and
delayed memory
While both CSF Aβ and pTau/Aβ were associated with delayed
memory, pTau/Aβ had larger effects. This supports the large body
of literature showing that amyloid burden does not correlate well
with clinical severity and that both amyloid and tau are necessary

for cognitive decline [71, 72]. We found that dMRI measures
mediated a larger proportion of Aβ effects (up to 41%) than pTau/
Aβ (up to 28%), in line with the limited direct relationship between
amyloid and cognitive outcomes compared to tau. Amyloid may
drive downstream cognitive impairment through microstructural
damage. Interestingly, only dMRI measures mediated the relation-
ship between pTau/Aβ and memory while cortical thickness did
not. Given that the sample was largely cognitively unimpaired, this
aligns with our findings that dMRI measures are more sensitive to
earlier pathological changes such as amyloid deposition.
There is a large body of literature showing that pTau is more

tightly linked with neurodegeneration and clinical severity than Aβ,
however we did not find significant associations between CSF pTau
and WMS-R delayed logical memory. This may be due in part to the
limited number of participants in our study, particularly those with
high pTau concentrations. As shown in Supplementary Fig. 18 two
CU individuals (one Aβ+ and one Aβ-) with high delayed memory
scores and high pTau were sufficient to drive the association (or lack
thereof). Supplementary analyses of more general ADSP-PHC
composite memory scores, however, did reveal a significant
relationship with pTau; in agreement with published findings, cortical
thickness mediated a large proportion of this effect (64%).

Comparison to other studies
Several AD dMRI studies of preclinical, asymptomatic individuals
have suggested a non-monotonic or biphasic relationship
between AD pathology and dMRI measures of brain microstruc-
ture [4], including two studies specifically evaluating associations
between CSF amyloid and tau biomarkers and either 1) single-
shell free-water and DTI MD [11], or 2) multi-shell NODDI ICVF and
ODI cortical measures [8]. An early transient stage of increased
diffusion restriction or lower diffusivity followed by a later phase
of lower restriction and increased diffusivity has been identified in

Fig. 4 CSF biomarker cut-point group differences. Scaled cortical AD-metaROI measures grouped by CSF biomarker cut-points show
(A) lower MT-NODDI ODI, ECVF, ICVF, MAP-MRI RTAP, RTOP, RTPP, and FreeSurfer CTh and (B) higher MT-NODDI ISOVF, MAP-MRI MSD, QIV, and
DTI MD in Aβ+ compared to Aβ- individuals. The greatest differences are visible between those Aβ-/pTau- and those Aβ+/pTau+ ; within Aβ-
individuals, no major differences are seen between pTau- and pTau+ individuals. Nominal group differences (p < 0.05) are denoted with
brackets; only CTh Aβ+/pTau+ differences were significant after multiple comparisons correction, as denoted with asterisks. C For each
cortical AD-metaROI measure, the area under the curve (AUC) for each dichotomized CSF group classification is reported. Significant
associations after multiple comparisons correction are indicated by filled circles (Full cohort: dMRI p ≤ 0.021, CTh p ≤ 0.016; No Dementia: dMRI
p ≤ 0.029, CTh p ≤ 0.0036).
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dMRI studies of both GM [73] and WM [74, 75]. These studies
propose that lower diffusivity associations with greater amyloid
burden, measured with CSF or PET, in the earliest stages could be
attributable to factors such as cellular hypertrophy or inflamma-
tory microglia infiltration and proliferation increasing the number
of diffusion barriers. Subsequent associations showing higher
diffusivity with greater amyloid load may be driven by cellular loss
and neurodegeneration. Our findings in a mix of largely CU and
MCI participants are in line with the second part of this trajectory.
Future work evaluating a larger sample of CU participants is
needed to isolate earlier signatures. As CSF changes may occur
before changes in the brain are detectable with PET, using both
data types would further allow for the examination of the earliest
diffusion trajectories in CSF+/PET- participants.

Limitations and future directions
There are several limitations to this study. First, the small number
of ADNI participants with multi-shell dMRI and CSF data limited
our ability to parse specific neuroimaging patterns within each
diagnostic and biomarker group. Second, ADNI is a predominantly
non-Hispanic White cohort and there is a need to establish the
generalizability of our findings to diverse communities. Third, the
ADNI3 dMRI acquisition does not support the standard NODDI
modeling assumptions in the GM, therefore, additional studies are
also needed across heterogeneous dMRI acquisitions (i.e., higher
b-values/shorter diffusion times) to replicate these findings. Our
results may be considered preliminary until replicated in
additional larger, independent cohorts. Fourth, while our media-
tion models were based on theoretical models of causality, we
cannot infer a causal relationship given the cross-sectional
dataset. Future work will investigate this relationship using a
longitudinal design. Finally, our “AD signature” metaROI was
based on cortical thickness associations with Braak neurofibrillary
tangle stage at autopsy [46], potentially biasing our classification
and mediation analyses. There may be a need to define meta-ROIs
based on associations between dMRI measures and amyloid.

CONCLUSIONS
Understanding the relationship between various dMRI measures
of brain microstructure and amyloid and tau pathology may

improve upon current AD models and provide further insight into
mechanisms underlying cognitive decline. Diffusion MRI metrics,
calculated across multiple models, may better track amyloid
progression through non-invasive means compared to cortical
thickness, the most commonly used measure of cortical damage.
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